Computer-readable proofs and dynamical systems

Yury Kudryashov,
Texas A \& M University

Real and Complex Dynamical Systems
dedicated to Yulij Ilyashenko's 80th Birthday
Nov 20-25, 2023
Tsaghkadzor, Armenia

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;
- (optional) automation tools to make users' life easier.

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;
- (optional) automation tools to make users' life easier.

Underlying theory

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;
- (optional) automation tools to make users' life easier.

Underlying theory

- set theory (Mizar, MetaMath),

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;
- (optional) automation tools to make users' life easier.

Underlying theory

- set theory (Mizar, MetaMath),
- or type theory (HOL, HOL Light, Isabelle),

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;
- (optional) automation tools to make users' life easier.

Underlying theory

- set theory (Mizar, MetaMath),
- or type theory (HOL, HOL Light, Isabelle),
- or dependent type theory (Coq, Lean).

What's a proof assistant (a.k.a. interactive theorem prover)?

A proof assistant has

- input language which often looks like (or is a) programming language.
- interpreter/compiler that reads a file and verifies it for correctness;
- (optional) automation tools to make users' life easier.

Underlying theory

- set theory (Mizar, MetaMath),
- or type theory (HOL, HOL Light, Isabelle),
- or dependent type theory (Coq, Lean).

Different proof assistants are incompatible.

Example: Poincaré recurrence theorem

namespace MeasureTheory
variable $\{\alpha$: Type*\} [MeasurableSpace $\alpha]\{\mu:$ Measure $\alpha\}\{\mathrm{f}: \alpha \rightarrow \alpha\}$
theorem exists_mem_image_mem [IsFiniteMeasure μ]
(hf : MeasurePreserving f $\mu \mu$) (hs : MeasurableSet s) (hs' : $\mu \mathrm{s} \neq 0$) :
$\exists \mathrm{x} \in \mathrm{s}, \exists \mathrm{m} \neq 0, \mathrm{f}^{\wedge}[\mathrm{m}] \mathrm{x} \in \mathrm{s}$
structure Conservative (f : $\alpha \rightarrow \alpha$) (μ : Measure α)
extends QuasiMeasurePreserving f $\mu \mu$: Prop where
exists_mem_image_mem : $\forall\{|\mathrm{s}|\}$, MeasurableSet $\mathrm{s} \rightarrow \mu \mathrm{s} \neq 0 \rightarrow$
$\exists \mathrm{x} \in \mathrm{s}, \exists \mathrm{m} \neq 0, \mathrm{f} \sim[\mathrm{m}] \mathrm{x} \in \mathrm{s}$
theorem MeasurePreserving.conservative [IsFiniteMeasure μ]
(h : MeasurePreserving f $\mu \mu$) : Conservative f μ :=
$\left\langle h . q u a s i M e a s u r e P r e s e r v i n g, ~ f u n ~ _~ h s m ~ h 0 ~ \mapsto ~ h . e x i s t s _m e m _i m a g e _m e m ~ h s m ~ h 0\right\rangle ~$
Real and Complex Dynamical Systems dedicated

Example: a proof

theorem exists_mem_iterate_mem_of_volume_lt_mul_volume
(hf : MeasurePreserving f $\mu \mu$) (hs : MeasurableSet s)
$\{\mathrm{n}: \mathbb{N}\}$ (hvol : μ (Set.univ : Set α) $<\mathrm{n} * \mu \mathrm{~s}$) :
$\exists \mathrm{x} \in \mathrm{s}, \exists \mathrm{m} \in \operatorname{Set}$.Ioo $0 \mathrm{n}, \mathrm{f} \sim \mathrm{m}] \mathrm{x} \in \mathrm{s}:=$ by
have $\mathrm{A}: \forall \mathrm{m}, \mu(\mathrm{f} \wedge[\mathrm{m}]-1, \mathrm{~s})=\mu \mathrm{s}:=$ fun $\mathrm{m} \mapsto$
(hf.iterate m).measure_preimage hs
have $\mathrm{H}: \mu$ (univ : Set α) $<\sum \mathrm{m}$ in Finset.range $\mathrm{n}, \mu\left(\mathrm{f}^{\wedge}[\mathrm{m}]-1\right.$, s) := by
simpa [A]
obtain $\langle i, h i, j, h j, h i j, x, h x i, h x j\rangle:$
$\exists i<n, \exists j<n, i \neq j \wedge\left(f^{\wedge}[i]-1, s \cap f^{\wedge}[j]-1, s\right)$. Nonempty $:=$ by
simpa using exists_nonempty_inter_of_measure_univ_lt_sum_measure μ (fun m _ \mapsto (hf.iterate m).measurable hs) H
wlog hlt : i < j generalizing i j

- exact this j hj i hi hij.symm hxj hxi (hij.lt_or_lt.resolve_left hlt)
refine $\left\langle f^{\wedge}[i] x, h x i, j-i\right.$,
$\left.\left\langle t s u b _p o s _o f _l t h l t, l t _o f _l e _o f _l t\left(j . s u b _l e ~ i\right) ~ h j\right\rangle, ~ ? _\right\rangle$
rwa [\leftarrow iterate_add_apply, tsub_add_cancel_of_le hlt.le]

Example: proof state

Goals (1)
α : Type u_1
inst : MeasurableSpace α
μ : Measure α
$\mathrm{f}: \alpha \rightarrow \alpha$
s : Set α
hf : MeasurePreserving f
hs : MeasurableSet s
$\mathrm{n}: \mathbb{N}$
hvol : $\uparrow \uparrow \mu$ univ < $\uparrow \mathrm{n} * \uparrow \uparrow \mu \mathrm{~s}$
$\mathrm{A}: \forall(\mathrm{m}: \mathbb{N}), \uparrow \uparrow \mu\left(\mathrm{f}^{\wedge}[\mathrm{m}]-1, \mathrm{~s}\right)=\uparrow \uparrow \mu \mathrm{s}$
$H: \uparrow \uparrow \mu$ univ < Finset.sum (Finset.range n) fun $m \mapsto \uparrow \uparrow \mu$ ($\mathrm{f}^{\sim}[\mathrm{m}]^{-1}$, s)
$\vdash \exists \mathrm{x} \in \mathrm{s}, \exists \mathrm{m} \in \operatorname{Ioo} 0 \mathrm{n}, \mathrm{f} \wedge[\mathrm{m}] \mathrm{x} \in \mathrm{s}$

Incomplete list of large formalization projects

in Coq, Isabelle, and Lean, and Mizar
Four color theorem Coq, Benjamin Werner and Georges Gonthier, 2005
Feit-Thompson Theorem Coq, Georges Gonthier, 2012
Complex analysis Isabelle/HOL, Thomas Hales
Proof of Kepler's Conjecture Isabelle and HOL Light, Thomas Hales and Co, 2014 Jordan Curve Theorem (HOL Light, Thomas Hales, 2007; Isabelle, Larry Paulson, 2017; Mizar, Artur Korniłowicz, 2007; Coq, Jean-François Dufourd, 2008)
Poincaré-Bendixson Theorem Isabelle/HOL, Fabian Immler, Yong Kiam Tan, 2020
Independence of the Continuum Hypothesis Lean, Floris van Doorn and Jesse Han, 2020
Connectedness of the Mandelbrot set Lean, Geoffrey Irving, 2023
Sphere eversion Lean, Floris Doorn, Patrick Massot, Oliver Nash, 2023
Galois Theory Lean, Thomas Browning, Patrick Lutz, 2022; Coq, Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub, 2021
Liquid Tensor Experiment (recent Peter Scholze's work) Lean, large team, 2022 Combinatorics: some recent proofs were formalized while the paper was still under review!

What's not formalized from the poll?

Before the talk, I distributed a "Guess what's formalized?" poll with 21 theorems. The following five from the list are not formalized yet (AFAIK).

- Cauchy-Kovalevskaya Theorem on existence of an analytic solution of an analytic PDE.
- Denjoy's theorem on rotation number.
- Herman-Yoccoz theorem on linearization of a circle diffeomorphism.
- Fermat's Last Theorem.
- Sard's Theorem.

Why bother? Correctness

```
Theorem (incorrect)
Let \(f: V \rightarrow W\) be a map between complex normed spaces. Let \(U\) be a bounded nonempty set in \(V\). If \(f\) is complex differentiable on \(U\) and is continuous on its closure, then the norm of \(f(x)\) achieves its maximum on the closure of \(U\) at a point in the frontier of \(U\).
```


Why bother? Correctness

Abstract

Theorem (correct) Let $f: V \rightarrow W$ be a map between complex normed spaces. Suppose that V has finite positive dimension. Let U be a bounded nonempty set in V. If f is complex differentiable on U and is continuous on its closure, then the norm of $f(x)$ achieves its maximum on the closure of U at a point in the frontier of U.

Why bother? Correctness

Theorem (correct)

Let $f: V \rightarrow W$ be a map between complex normed spaces. Suppose that V has finite positive dimension. Let U be a bounded nonempty set in V. If f is complex differentiable on U and is continuous on its closure, then the norm of $f(x)$ achieves its maximum on the closure of U at a point in the frontier of U.
theorem Complex.exists_mem_frontier_isMaxOn_norm
\{E : Type u\} [NormedAddCommGroup E] [NormedSpace \mathbb{C} E]
[Nontrivial E] [FiniteDimensional \mathbb{C} E]
\{F : Type v\} [NormedAddCommGroup F] [NormedSpace \mathbb{C} F]
$\{f: E \rightarrow F\}\{U: S e t E\}$ (hb : IsBounded U)
(hne : Set.Nonempty U) (hd : DiffContOnCl $\mathbb{C} f \mathrm{U}$) :
$\exists \mathrm{z} \in$ frontier U , IsMaxOn (norm \circ f) (closure U) z

Why bother? Correctness

As a consequence of my \#Lean4 formalization project I have found a small (but nontrivial) bug in my paper!

- Terence Tao, Oct 23, 2023

Why bother?

Improved search If we have a huge library of formalized theorems, then one can index it and search it. Then you can see the exact assumptions that are guaranteed to work. We have https://loogle.lean-fro.org/ and https://theresanaiforthat.com/ai/moogle/.

Why bother?

Improved search If we have a huge library of formalized theorems, then one can index it and search it. Then you can see the exact assumptions that are guaranteed to work. We have https://loogle.lean-fro.org/ and https://theresanaiforthat.com/ai/moogle/.
Automatic tools If you add an assumption to your theorem but never use it, then Lean will tell you!

Why bother?

Improved search If we have a huge library of formalized theorems, then one can index it and search it. Then you can see the exact assumptions that are guaranteed to work. We have https://loogle.lean-fro.org/ and https://theresanaiforthat.com/ai/moogle/.
Automatic tools If you add an assumption to your theorem but never use it, then Lean will tell you!
Proof inspection What does x in this formula mean? Click to jump to the definition and see for yourself.

Why bother?

Improved search If we have a huge library of formalized theorems, then one can index it and search it. Then you can see the exact assumptions that are guaranteed to work. We have https://loogle.lean-fro.org/ and https://theresanaiforthat.com/ai/moogle/.
Automatic tools If you add an assumption to your theorem but never use it, then Lean will tell you!
Proof inspection What does x in this formula mean? Click to jump to the definition and see for yourself.
Hide details Imagine moving boring details of a technical lemma to a computer-verifiable file and explain the idea behind it instead.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.
- Then elements of $p \wedge q$ are pairs of $(h p: p)$ and $(h q: q)$.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.
- Then elements of $p \wedge q$ are pairs of (hp:p) and (hq:q).
- An element of $p \vee q$ is either $\operatorname{inl}(\mathrm{hp}: p$) or $\operatorname{inr}(\mathrm{hq}: q$).

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.
- Then elements of $p \wedge q$ are pairs of (hp:p) and (hq:q).
- An element of $p \vee q$ is either inl (hp : p) or inr (hq : q).
- Implication $p \Rightarrow q$ is the same as a map $p \rightarrow q$.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.
- Then elements of $p \wedge q$ are pairs of (hp:p) and (hq:q).
- An element of $p \vee q$ is either inl (hp : p) or inr (hq : q).
- Implication $p \Rightarrow q$ is the same as a map $p \rightarrow q$.
- A formula is true iff there is an element of this type.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.
- Then elements of $p \wedge q$ are pairs of (hp:p) and (hq:q).
- An element of $p \vee q$ is either $\operatorname{inl}(\mathrm{hp}: p$) or $\operatorname{inr}(\mathrm{hq}: q$).
- Implication $p \Rightarrow q$ is the same as a map $p \rightarrow q$.
- A formula is true iff there is an element of this type.
- Proving a theorem means defining a function.

Curry-Howard correspondence

- Each variable has a type $(\mathbb{N}, \mathbb{R}, \mathbb{R} \rightarrow \mathbb{N}$ etc $)$.
- In particular, $(0: \mathbb{N})$ and $(0: \mathbb{R})$ are different entities.
- Think about a proposition p as types whose elements are the proofs of p.
- Then elements of $p \wedge q$ are pairs of (hp:p) and (hq:q).
- An element of $p \vee q$ is either $\operatorname{inl}(\mathrm{hp}: p$) or $\operatorname{inr}(\mathrm{hq}: q$).
- Implication $p \Rightarrow q$ is the same as a map $p \rightarrow q$.
- A formula is true iff there is an element of this type.
- Proving a theorem means defining a function.

Dependent type theory allows types like "pairs (a, b), where b has type $f(a)$ ".

Kernel vs frontend

- The frontend reads the file, then

Kernel vs frontend

- The frontend reads the file, then
- fills in the gaps (what does " + " for reals mean?)

Kernel vs frontend

- The frontend reads the file, then
- fills in the gaps (what does " + " for reals mean?)
- executes "tactics" (e.g., "the goal is true in any ring, prove it");

Kernel vs frontend

- The frontend reads the file, then
- fills in the gaps (what does " + " for reals mean?)
- executes "tactics" (e.g., "the goal is true in any ring, prove it");
- generates a proof in a format that kernel can understand.

Kernel vs frontend

- The frontend reads the file, then
- fills in the gaps (what does " + " for reals mean?)
- executes "tactics" (e.g., "the goal is true in any ring, prove it");
- generates a proof in a format that kernel can understand.
- The kernel verifies each definition or theorem for correctness.

Kernel vs frontend

- The frontend reads the file, then
- fills in the gaps (what does " + " for reals mean?)
- executes "tactics" (e.g., "the goal is true in any ring, prove it");
- generates a proof in a format that kernel can understand.
- The kernel verifies each definition or theorem for correctness.
- This way the kernel is relatively small, so we have more reasons to trust it.

Kernel vs frontend

- The frontend reads the file, then
- fills in the gaps (what does " + " for reals mean?)
- executes "tactics" (e.g., "the goal is true in any ring, prove it");
- generates a proof in a format that kernel can understand.
- The kernel verifies each definition or theorem for correctness.
- This way the kernel is relatively small, so we have more reasons to trust it.
- Also, a buggy tactic can't make the system accept a faulty proof.

Lean mathematics library

- Available at https://github.com/leanprover-community/mathlib4.

Lean mathematics library

- Available at https://github.com/leanprover-community/mathlib4.
- Starts with basics (definition of a semigroup etc), goes all the way up to modular forms, preadditive categories, Galois groups, Haar measures, schemes, Dold-Kan equivalence etc

Lean mathematics library

- Available at https://github.com/leanprover-community/mathlib4.
- Starts with basics (definition of a semigroup etc), goes all the way up to modular forms, preadditive categories, Galois groups, Haar measures, schemes, Dold-Kan equivalence etc
- Almost 4000 files.

Lean mathematics library

- Available at https://github.com/leanprover-community/mathlib4.
- Starts with basics (definition of a semigroup etc), goes all the way up to modular forms, preadditive categories, Galois groups, Haar measures, schemes, Dold-Kan equivalence etc
- Almost 4000 files.
- Almost 1000000 lines of code.

Lean mathematics library

- Available at https://github.com/leanprover-community/mathlib4.
- Starts with basics (definition of a semigroup etc), goes all the way up to modular forms, preadditive categories, Galois groups, Haar measures, schemes, Dold-Kan equivalence etc
- Almost 4000 files.
- Almost 1000000 lines of code.
- Almost 200000 lines of comments.

Lean mathematics library

- Available at https://github.com/leanprover-community/mathlib4.
- Starts with basics (definition of a semigroup etc), goes all the way up to modular forms, preadditive categories, Galois groups, Haar measures, schemes, Dold-Kan equivalence etc
- Almost 4000 files.
- Almost 1000000 lines of code.
- Almost 200000 lines of comments.
- A computer needs from 20 min to 3 hrs to verify it, depending on hardware.

My contributions (basic)

- the category of all categories;
- concrete categories;
- filter bases;
- convex hull;
- midpoint in an affine space;
- support of a function;
- complemented elements of a lattice;
- $f=\Theta(g)$;
- germ of a function at a filter;
- nontrivial filter;
- nonempty set;
- fixed and periodic points;
- involutive functions.

My contributions (topology)

- Intermediate Value Theorem.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.
- Urysohn's Lemma.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.
- Urysohn's Lemma.
- Tietze extension theorem.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.
- Urysohn's Lemma.
- Tietze extension theorem.
- Continuous partitions of unity.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.
- Urysohn's Lemma.
- Tietze extension theorem.
- Continuous partitions of unity.
- Uryshon's metrization theorem.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.
- Urysohn's Lemma.
- Tietze extension theorem.
- Continuous partitions of unity.
- Uryshon's metrization theorem.
- Split regular spaces from T_{4} spaces.

My contributions (topology)

- Intermediate Value Theorem.
- Paracompact spaces.
- Shrinking Lemma.
- Urysohn's Lemma.
- Tietze extension theorem.
- Continuous partitions of unity.
- Uryshon's metrization theorem.
- Split regular spaces from T_{4} spaces.
- Define T_{5} spaces and prove that a linear order is T_{5}.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.
- Cauchy integral formula (for circles), maximum modulus principle, Liouville theorem, Schwarz lemma, removable singularity, Phragmen-Lindelöf theorem, Poincaré metric in the upper half-plane.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.
- Cauchy integral formula (for circles), maximum modulus principle, Liouville theorem, Schwarz lemma, removable singularity, Phragmen-Lindelöf theorem, Poincaré metric in the upper half-plane.
- Lagrange Multipliers.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.
- Cauchy integral formula (for circles), maximum modulus principle, Liouville theorem, Schwarz lemma, removable singularity, Phragmen-Lindelöf theorem, Poincaré metric in the upper half-plane.
- Lagrange Multipliers.
- Smooth partitions of unity.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.
- Cauchy integral formula (for circles), maximum modulus principle, Liouville theorem, Schwarz lemma, removable singularity, Phragmen-Lindelöf theorem, Poincaré metric in the upper half-plane.
- Lagrange Multipliers.
- Smooth partitions of unity.
- Baby version of the Whitney embedding theorem.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.
- Cauchy integral formula (for circles), maximum modulus principle, Liouville theorem, Schwarz lemma, removable singularity, Phragmen-Lindelöf theorem, Poincaré metric in the upper half-plane.
- Lagrange Multipliers.
- Smooth partitions of unity.
- Baby version of the Whitney embedding theorem.
- Hölder continuity, Hausdorff measure, and Hausdorff dimension.

My contributions (analysis)

- Fermat's Theorem, Rolle's Theorem, Lagrange's MVT, Cauchy's MVT, Darboux theorem.
- AM-GM, Hölder inequality, Minkowskii inequality, Jensen's inequality.
- M. Riesz and Hahn-Banach extension theorems.
- Strict differentiability, Inverse Function Theorem, Implicit Function Theorem.
- Mazur-Ulam Theorem.
- The p-series convergence test.
- FTC-1, Riemann, Henstock-Kurzweil, and McShane integrals, divergence theorem.
- Cauchy integral formula (for circles), maximum modulus principle, Liouville theorem, Schwarz lemma, removable singularity, Phragmen-Lindelöf theorem, Poincaré metric in the upper half-plane.
- Lagrange Multipliers.
- Smooth partitions of unity.
- Baby version of the Whitney embedding theorem.
- Hölder continuity, Hausdorff measure, and Hausdorff dimension.
- Liouville numbers form a dense G_{δ} set of measure zero.

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.
- Picard-Lindelöf/Cauchy-Lipschitz Theorem.

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.
- Picard-Lindelöf/Cauchy-Lipschitz Theorem.
- Gronwall inequality.

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.
- Picard-Lindelöf/Cauchy-Lipschitz Theorem.
- Gronwall inequality.
- Von Neumann mean ergodic theorem (for an operator in a Hilbert space).

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.
- Picard-Lindelöf/Cauchy-Lipschitz Theorem.
- Gronwall inequality.
- Von Neumann mean ergodic theorem (for an operator in a Hilbert space).
- (Quasi) measure preserving maps.

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.
- Picard-Lindelöf/Cauchy-Lipschitz Theorem.
- Gronwall inequality.
- Von Neumann mean ergodic theorem (for an operator in a Hilbert space).
- (Quasi) measure preserving maps.
- Measure preserving actions.

My contributions (relevant to dynamics)

- Definition of the rotation number and basic properties.
- Picard-Lindelöf/Cauchy-Lipschitz Theorem.
- Gronwall inequality.
- Von Neumann mean ergodic theorem (for an operator in a Hilbert space).
- (Quasi) measure preserving maps.
- Measure preserving actions.
- Conservative maps, Poincaré recurrence theorem.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- \square Dulac series, additive group structure.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- \square Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.
- \square Topology on the sphere.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.
- \square Topology on the sphere.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.
- \square Topology on the sphere.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- \square Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.
- \square Topology on the sphere.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- \square Dulac series, additive group structure.
- \square Closed under composition.
- Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.
- \square Topology on the sphere.

Ilyashenko's individual finiteness theorem

For hyperbolic saddles only

- \square Standard quadratic domains (definition, basic properties).
- \square Phragmen-Lindelöf principle for quadratic domains.
- Almost (pre)regular germs.
- \square Dulac series, additive group structure.
- \square Closed under composition.
- \square Dichotomy: identity map or no fixed points.
- \square A nonzero analytic germ is almost regular.
- Hyperbolic saddles.
- \square Formal normal form.
- Correspondence map has a Dulac series.
- \square Correspondence map is extendable to a standard quadratic domain.
- \square Topology on the sphere.

About 1500 lines of code so far.

Happy Birthday

Happy Birthday Yulij Sergeevich!

